COURSE INFORMATION					
Course Title Code Semester L+P Hour Credits ECTS					
ADVANCED COMPUTER ARCHITECTURES	CSE 533	2	3 + 0	3	10

Prerequisites

Language of Instruction	English
Course Level	Graduate
Course Type	Compulsory
Course Coordinator	
Instructors	Gürhan Küçük
Assistants	
Goals	The aim of this course is to provide students with knowledge and abilities to design and to implement microarchitectural techniques in contemporary processors.
Content	Performance, energy/power and complexity, instruction set principles, pipelining and pipeline hazards, instruction level parallelism, overcoming pipeline hazards, static and dynamic instruction scheduling mechanisms, speculative and out-of-order execution, superscalar, superpipelined processors, memory- hierarchy design, VLIW, CMP, SMT, dataflow, multicluster architectures.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
 Knowledge of performance, power/energy and complexity metrics on the evaluation of different architectures. Knowledge of theoretic background on these metrics. 	1,2,3	1,2	A,C
2. Knowledge of instruction set architecture and RISC and CISC.	1,2,3	1,2	A,C
 Knowledge of instruction pipelines and pipeline hazards. 	1,2,3	1,2	A,C
 Knowledge and ability to apply sta and dynamic instruction scheduli mechanisms to overcome pipeli hazards. 	1g 1 2 3	1,2	A,C

5.	Knowledge and ability to use modern simulators for the design of new architectures and for the modifications on the existing architectures.	1,2,4	1,2	B,D
6.	Knowledge of memory hierarchy and organization.	1,2,3	1,2	A,C
7.	Knowledge of various architectures and ability to compare their cons and pros.	1,2	1,2	A,C
8.	Ability to conduct experiments, gather data, analyze and interpret results for investigating engineering solutions to computer architecture problems.	1,2,3,4	1,2	B,D
9.	Ability to understand a published work, to investigate its cons and pros and to present.	1,2,4	1,2	A,C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Term Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Introduction, Measuring and Reporting Performance, Power and Complexity				
2	Instruction Set Principles, MIPS ISA				
3	Basic Pipeline Theory, Pipeline Hazards, Handling Multicycle Operations				
4	Reducing and Removing Pipeline Hazards				
5	Dynamic Branch Prediction				
6	Instruction Level Parallelism, Static Instruction Scheduling				
7	Dynamic Instruction Scheduling				
8	Midterm Examination				
9	Superscalar Processors, precise interrupts in out-of-order processors, Register Renaming				
10	Instruction Queue, Reorder Buffer, Load/Store Queue, Architectural and Physical Register Files				
11	Memory Systems, Caches, SRAMs, DRAMs, virtual memory, TLBs				
12	Various Architectures, VLIW, EPIC, Multicluster, SMT, CMP, Many-Integrated-Core				
13	Paper Presentation				
	Project Demos & Term Papers				

RECOMMENDED SOURCES			
Textbook	J. Hennessy & D. Patterson, Computer Architecture: A Quantitative Approach, 5 th Ed., Morgan Kaufmann		
	Lecture Notes: http://cse.yeditepe.edu.tr/v2/en/academic/course-pages		
Additional Resources	J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of Superscalar Processors, McGraw-Hill, 2004		

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	39	
Quizzes			
Assignment	5	15	
Term Project	1	31	
Paper Presentation	1	15	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		35	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		65	
Total		100	

COURSE CATEGORY

Γ

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM			
No	Program Learning Outcomes	Contribution		
		1 2 3 4 5		
1	Knowledge in the advanced computer architecture field	X		

2	Knowledge in advanced system design for computer engineering		x
3	Knowledge in the theoretical topics of computer science	x	
4	Ability to comprehend, analyse and critique academic publications and conduct scholarly research at the frontiers of computer engineering		x
5	Ability and knowledge in the fields of Next-Generation and contemporary computer networks		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam week: 13x Total course hours)	13	3	39
Hours for off-the-classroom study (Pre-study, practice)	14	6	84
Mid-terms	1	3	3
Homework	5	3	15
Term Project	1	75	75
Final examination	1	24	24
Total Work Load			240
Total Work Load / 25 (h)			9,6
ECTS Credit of the Course			10